In a number of machine learning models, an input query is searched across the trained class vectors to find the closest feature class vector in cosine similarity metric. However, performing the cosine similarities between the vectors in Von-Neumann machines involves a large number of multiplications, Euclidean normalizations and division operations, thus incurring heavy hardware energy and latency overheads. Moreover, due to the memory wall problem that presents in the conventional architecture, frequent cosine similarity-based searches (CSSs) over the class vectors requires a lot of data movements, limiting the throughput and efficiency of the system. To overcome the aforementioned challenges, this paper introduces COSIME, an general in-memory associative memory (AM) engine based on the ferroelectric FET (FeFET) device for efficient CSS. By leveraging the one-transistor AND gate function of FeFET devices, current-based translinear analog circuit and winner-take-all (WTA) circuitry, COSIME can realize parallel in-memory CSS across all the entries in a memory block, and output the closest word to the input query in cosine similarity metric. Evaluation results at the array level suggest that the proposed COSIME design achieves 333X and 90.5X latency and energy improvements, respectively, and realizes better classification accuracy when compared with an AM design implementing approximated CSS. The proposed in-memory computing fabric is evaluated for an HDC problem, showcasing that COSIME can achieve on average 47.1X and 98.5X speedup and energy efficiency improvements compared with an GPU implementation.


翻译:在一系列机器学习模型中,在经过培训的舱矢量中,搜索一个输入查询,以找到在焦线相似度度度度度度测量中最接近的特性级矢量。然而,在Von-Neumann机器中,在矢量矢量之间进行焦量相似性,这涉及到大量倍增、Euclidean正常化和分化操作,从而产生大量硬件能量和内嵌性间接费用。此外,由于传统结构中的内存墙问题,对级矢量的经常同步相似性搜索(CSS)5 需要大量数据移动,限制系统的吞吐量和效率。为了克服上述挑战,本文介绍了COSIME,这是基于电离电器FET(FeFET)装置的一种一般模拟联合内存(AM)引擎。由于利用FFFET装置的一流压和门功能功能,基于当前线性模拟电路路路和赢家通电路路路,COSI可以在所有条目中实现模CSS中平行的CIS的同步同步同步同步值,因此可以在一个存储区段内实现最接近的计算结果,并且在计算中实现最接近的CIMX的计算。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月19日
Arxiv
0+阅读 · 2022年9月19日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员