Due to the lack of camera parameter information for in-the-wild images, existing 3D human pose and shape (HPS) estimation methods make several simplifying assumptions: weak-perspective projection, large constant focal length, and zero camera rotation. These assumptions often do not hold and we show, quantitatively and qualitatively, that they cause errors in the reconstructed 3D shape and pose. To address this, we introduce SPEC, the first in-the-wild 3D HPS method that estimates the perspective camera from a single image and employs this to reconstruct 3D human bodies more accurately. %regress 3D human bodies. First, we train a neural network to estimate the field of view, camera pitch, and roll given an input image. We employ novel losses that improve the calibration accuracy over previous work. We then train a novel network that concatenates the camera calibration to the image features and uses these together to regress 3D body shape and pose. SPEC is more accurate than the prior art on the standard benchmark (3DPW) as well as two new datasets with more challenging camera views and varying focal lengths. Specifically, we create a new photorealistic synthetic dataset (SPEC-SYN) with ground truth 3D bodies and a novel in-the-wild dataset (SPEC-MTP) with calibration and high-quality reference bodies. Both qualitative and quantitative analysis confirm that knowing camera parameters during inference regresses better human bodies. Code and datasets are available for research purposes at https://spec.is.tue.mpg.de.


翻译:由于缺乏对光线图像的摄像参数信息,现有的 3D 人形和形状( HPS) 估计方法做出了一些简化的假设: 微弱的透视投影、 大的恒定焦长度和零摄像旋转。 这些假设往往无法维持, 我们从数量上和质量上显示, 它们会在重建的 3D 形状和形状中造成错误。 为了解决这个问题, 我们引入了 SPEC, 这是第一个从单一图像中估计视觉摄像头的3D HPS 方法, 并用它来更准确地重建 3D 人体。% regress 3D 人体结构。 首先, 我们训练一个神经网络来估计视图、 摄像头和滚动的领域。 我们使用新的损失来提高校准精确度。 然后我们训练一个新的网络, 将相机校准和3DHPEC 体形状和形状结合起来。 SPEC 比以前在标准基准( DPW) 和两个具有更具有挑战性的相机视图和不同焦距的定量参数的新的数据集。 具体地, 我们用新的SISS- 数据在高的合成的SIS数据分析中, 我们用新的SISS- 和GIS-D- recreal- dal- dal- recodeal- real codeal- deal- deal- deal- d) a 和G- deal- regrameal codeal codeal- codeal codeal labisal labis codeal lades lades lades lades lades lades lades lades lades lades lax lades lades lades lades lades lades lades lad labal ladal ladal ladal ladal ladal ladal ladal ladal ladal ladal ladal ladal ladal ladal ladal ladal ladal lad ladal- ladal lad lad lad lad lad ladal lad d

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【泡泡一分钟】学习多视图相似度(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
GAN猫的脸
机械鸡
11+阅读 · 2017年7月8日
Arxiv
5+阅读 · 2018年4月13日
VIP会员
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【泡泡一分钟】学习多视图相似度(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
GAN猫的脸
机械鸡
11+阅读 · 2017年7月8日
Top
微信扫码咨询专知VIP会员