The Wasserstein distance has been an attractive tool in many fields. But due to its high computational complexity and the phenomenon of the curse of dimensionality in empirical estimation, various extensions of the Wasserstein distance have been proposed to overcome the shortcomings such as the Sliced Wasserstein distance. It enjoys a low computational cost and dimension-free sample complexity, but there are few distributional limit results of it. In this paper, we focus on Sliced 1-Wasserstein distance and its variant max-Sliced 1-Wasserstein distance. We utilize the central limit theorem in Banach space to derive the limit distribution for the Sliced 1-Wasserstein distance. Through viewing the empirical max-Sliced 1-Wasserstein distance as a supremum of an empirical process indexed by some function class, we prove that the function class is P-Donsker under mild moment assumption. Moreover, for computing Sliced p-Wasserstein distance based on Monte Carlo method, we explore that how many random projections that can make sure the error small in high probability. We also provide upper bound of the expected max-Sliced 1-Wasserstein between the true and the empirical probability measures under different conditions and the concentration inequalities for max-Sliced 1-Wasserstein distance are also presented. As applications of the theory, we utilize them for two-sample testing problem.


翻译:瓦瑟斯坦距离在许多领域都是一个有吸引力的工具。 但是,由于它计算复杂程度高,且在实证估计中存在对维度的诅咒现象,因此提出了瓦瑟斯坦距离的各种扩展,以克服Slied Vasserstein距离等缺陷。它具有低计算成本和无维度的样本复杂性,但很少有分配限制结果。在本文中,我们侧重于Sliced 1-Wasserstein 距离及其变异的峰值1-Wasserstein距离。我们利用Banach空间的中央限值理论来得出Sliced 1-Wasserstein距离的限值分布。我们通过将经验性最高限值1-Wasserstein距离作为某些功能类指数化的经验性进程的一个精华,我们证明功能类在轻度假设下是P-Donsker。此外,我们探索了多少随机的预测能确保高概率小的错误。我们还提供了Aservicle 最高标准1和标准1号标准下的不同标准级标准值的上,我们还提出了标准级标准级标准1和标准级标准标准1下标准级标准中标准标准标准标准标准中的标准标准标准标准标准标准的高级标准。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2021年12月8日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员