An increasing body of research focuses on using neural networks to model time series. A common assumption in training neural networks via maximum likelihood estimation on time series is that the errors across time steps are uncorrelated. However, errors are actually autocorrelated in many cases due to the temporality of the data, which makes such maximum likelihood estimations inaccurate. In this paper, in order to adjust for autocorrelated errors, we propose to learn the autocorrelation coefficient jointly with the model parameters. In our experiments, we verify the effectiveness of our approach on time series forecasting. Results across a wide range of real-world datasets with various state-of-the-art models show that our method enhances performance in almost all cases. Based on these results, we suggest empirical critical values to determine the severity of autocorrelated errors. We also analyze several aspects of our method to demonstrate its advantages. Finally, other time series tasks are also considered to validate that our method is not restricted to only forecasting.


翻译:越来越多的研究侧重于利用神经网络模拟时间序列。通过对时间序列的最大可能性估计来培训神经网络的一个共同假设是,跨时间步骤的错误与时间序列不相干。然而,由于数据的时间性,错误在很多情况下实际上与自动相关,这使得这种最大可能性估计不准确。在本文中,为了适应与自动有关的错误,我们提议与模型参数一起学习自动关系系数。在实验中,我们核查我们的时间序列预测方法的有效性。各种最先进的模型显示,我们的方法几乎在所有情况下都提高了性能。根据这些结果,我们建议了确定与自动化有关的错误严重程度的经验性关键值。我们还分析了我们用来证明其优点的方法的若干方面。最后,还考虑了其他时间序列任务,以证实我们的方法并不限于预测。

1
下载
关闭预览

相关内容

在统计学中,最大似然估计(maximum likelihood estimation, MLE)是通过最大化似然函数估计概率分布参数的一种方法,使观测数据在假设的统计模型下最有可能。参数空间中使似然函数最大化的点称为最大似然估计。最大似然逻辑既直观又灵活,因此该方法已成为统计推断的主要手段。
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
38+阅读 · 2020年12月2日
Type-augmented Relation Prediction in Knowledge Graphs
Arxiv
27+阅读 · 2020年6月19日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员