Standard regression methods can lead to inconsistent estimates of causal effects when there are time-varying treatment effects and time-varying covariates. This is due to certain non-confounding latent variables that create colliders in the causal graph. These latent variables, which we call phantoms, do not harm the identifiability of the causal effect, but they render naive regression estimates inconsistent. Motivated by this, we ask: how can we modify regression methods so that they hold up even in the presence of phantoms? We develop an estimator for this setting based on regression modeling (linear, log-linear, probit and Cox regression), proving that it is consistent for the causal effect of interest. In particular, the estimator is a regression model fit with a simple adjustment for collinearity, making it easy to understand and implement with standard regression software. From a causal point of view, the proposed estimator is an instance of the parametric g-formula. Importantly, we show that our estimator is immune to the null paradox that plagues most other parametric g-formula methods.


翻译:标准回归方法可以导致在有时间变化的治疗效果和时间变化的共变时, 导致对因果关系的估算不一致。 这是因为某些不固定的潜伏变量在因果图中产生相撞作用。 这些潜在变量, 我们称之为幻影, 并不损害因果关系的可识别性, 但是它们使得天真回归估计不一致。 我们为此询问: 我们如何修改回归方法, 以便在存在幻影的情况下也能维持这些回归方法? 我们根据回归模型( 线性、 日志线性、 Probit 和 Cox 回归) 为这一设置开发一个估计符, 证明它符合利益因果关系。 特别是, 估计值是一种回归模型, 适合简单的校准性调整, 使得它容易理解并使用标准的回归软件。 从因果关系角度看, 提议的估算符是模拟g- 公式的例子。 确实, 我们显示, 我们的估算器可以避免其他最差偏差的模拟法方法的完全相反的悖论。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
102+阅读 · 2021年8月27日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
108+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员