Standard regression methods can lead to inconsistent estimates of causal effects when there are time-varying treatment effects and time-varying covariates. This is due to certain non-confounding latent variables that create colliders in the causal graph. These latent variables, which we call phantoms, do not harm the identifiability of the causal effect, but they render naive regression estimates inconsistent. Motivated by this, we ask: how can we modify regression methods so that they hold up even in the presence of phantoms? We develop an estimator for this setting based on regression modeling (linear, log-linear, probit and Cox regression), proving that it is consistent for the causal effect of interest. In particular, the estimator is a regression model fit with a simple adjustment for collinearity, making it easy to understand and implement with standard regression software. From a causal point of view, the proposed estimator is an instance of the parametric g-formula. Importantly, we show that our estimator is immune to the null paradox that plagues most other parametric g-formula methods.
翻译:标准回归方法可以导致在有时间变化的治疗效果和时间变化的共变时, 导致对因果关系的估算不一致。 这是因为某些不固定的潜伏变量在因果图中产生相撞作用。 这些潜在变量, 我们称之为幻影, 并不损害因果关系的可识别性, 但是它们使得天真回归估计不一致。 我们为此询问: 我们如何修改回归方法, 以便在存在幻影的情况下也能维持这些回归方法? 我们根据回归模型( 线性、 日志线性、 Probit 和 Cox 回归) 为这一设置开发一个估计符, 证明它符合利益因果关系。 特别是, 估计值是一种回归模型, 适合简单的校准性调整, 使得它容易理解并使用标准的回归软件。 从因果关系角度看, 提议的估算符是模拟g- 公式的例子。 确实, 我们显示, 我们的估算器可以避免其他最差偏差的模拟法方法的完全相反的悖论。