Ultra-lightweight model design is an important topic for the deployment of existing speech enhancement and source separation techniques on low-resource platforms. Various lightweight model design paradigms have been proposed in recent years; however, most models still suffer from finding a balance between model size, model complexity, and model performance. In this paper, we propose the group communication with context codec (GC3) design to decrease both model size and complexity without sacrificing the model performance. Group communication splits a high-dimensional feature into groups of low-dimensional features and applies a module to capture the inter-group dependency. A model can then be applied to the groups in parallel with a significantly smaller width. A context codec is applied to decrease the length of a sequential feature, where a context encoder compresses the temporal context of local features into a single feature representing the global characteristics of the context, and a context decoder decompresses the transformed global features back to the context features. Experimental results show that GC3 can achieve on par or better performance than a wide range of baseline architectures with as small as 2.5% model size.


翻译:超光速模型设计是将现有语音增强和源分离技术应用于低资源平台的一个重要议题。近年来已经提出了各种轻量模型设计范例;然而,大多数模型仍然在模型大小、模型复杂性和模型性能之间找到平衡。在本文中,我们建议与背景代码(GC3)进行群体交流,以减少模型大小和复杂性,同时又不牺牲模型性能。群体通信将高维特征分为低维特征组,并应用模块来捕捉群体间依赖性。然后,可以同时在宽度小得多的情况下对群体适用一个模型。使用上下文代码来缩短连续特征的长度,在连续特征中,环境编码器将本地特征的时间环境组合成一个单一特征,代表环境的全局特征,环境解码器将变化的全球特征反压缩回到背景特征。实验结果显示,GC3可以比规模小至2.5%的广大基线结构取得相同或更好的性能。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
【Google】多模态Transformer视频检索,Multi-modal Transformer
专知会员服务
102+阅读 · 2020年7月22日
专知会员服务
60+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
Arxiv
0+阅读 · 2021年2月15日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
7+阅读 · 2018年3月22日
VIP会员
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
相关论文
Arxiv
0+阅读 · 2021年2月15日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
7+阅读 · 2018年3月22日
Top
微信扫码咨询专知VIP会员