Advanced volumetric imaging methods and genetically encoded activity indicators have permitted a comprehensive characterization of whole brain activity at single neuron resolution in \textit{Caenorhabditis elegans}. The constant motion and deformation of the nematode nervous system, however, impose a great challenge for consistent identification of densely packed neurons in a behaving animal. Here, we propose a cascade solution for long-term and rapid recognition of head ganglion neurons in a freely moving \textit{C. elegans}. First, potential neuronal regions from a stack of fluorescence images are detected by a deep learning algorithm. Second, 2-dimensional neuronal regions are fused into 3-dimensional neuron entities. Third, by exploiting the neuronal density distribution surrounding a neuron and relative positional information between neurons, a multi-class artificial neural network transforms engineered neuronal feature vectors into digital neuronal identities. With a small number of training samples, our bottom-up approach is able to process each volume - $1024 \times 1024 \times 18$ in voxels - in less than 1 second and achieves an accuracy of $91\%$ in neuronal detection and above $80\%$ in neuronal tracking over a long video recording. Our work represents a step towards rapid and fully automated algorithms for decoding whole brain activity underlying naturalistic behaviors.
翻译:高级体积成像法和遗传编码活动指标使得能够以单神经分辨率在\ textit{Caenorhabiditis elegans} 中全面描述整个大脑活动的整体特征。 线虫神经系统的持续运动和变形对持续识别在行为良好的动物之间密集包装的神经神经元构成巨大挑战。 这里, 我们提出了一个长期和快速识别在自由移动\ textit{C. elegans} 中头部交织神经质的快速渐进式解决方案。 首先, 通过深层学习算法检测出一堆荧光图像中的潜在神经神经区域。 第二, 2维神经区域被连接到三维神经实体中。 第三, 利用神经神经元之间神经密度和相对定位信息周围的神经密度分布是一个巨大的挑战。 多级人工神经质网络将工程神经特征矢量转换为数字神经神经性身份。 由于培训样本数量少, 我们的自下方方法能够处理每卷 - 1024\ 时间 1024\\ 时间 18美元 的神经神经区域, 在快速跟踪中, 实现一个比100 的完整的神经序列的完整的完整动作, 的完整的完整的完整 记录。