We study distributed algorithms built around minor-based vertex sparsifiers, and give the first algorithm in the CONGEST model for solving linear systems in graph Laplacian matrices to high accuracy. Our Laplacian solver has a round complexity of $O(n^{o(1)}(\sqrt{n}+D))$, and thus almost matches the lower bound of $\widetilde{\Omega}(\sqrt{n}+D)$, where $n$ is the number of nodes in the network and $D$ is its diameter. We show that our distributed solver yields new sublinear round algorithms for several cornerstone problems in combinatorial optimization. This is achieved by leveraging the powerful algorithmic framework of Interior Point Methods (IPMs) and the Laplacian paradigm in the context of distributed graph algorithms, which entails numerically solving optimization problems on graphs via a series of Laplacian systems. Problems that benefit from our distributed algorithmic paradigm include exact mincost flow, negative weight shortest paths, maxflow, and bipartite matching on sparse directed graphs. For the maxflow problem, this is the first exact distributed algorithm that applies to directed graphs, while the previous work by [Ghaffari et al. SICOMP'18] considered the approximate setting and works only for undirected graphs. For the mincost flow and the negative weight shortest path problems, our results constitute the first exact distributed algorithms running in a sublinear number of rounds. Given that the hybrid between IPMs and the Laplacian paradigm has proven useful for tackling numerous optimization problems in the centralized setting, we believe that our distributed solver will find future applications.
翻译:我们研究的是围绕基于次要的顶点封闭仪的分布式算法,并给出了CONGEST模型中用于解决图形 Laplacian 矩阵中线性系统的首种算法。 我们的 Laplacian 求解器的整轮复杂性为$O( n ⁇ o(1)}( sqrt{n ⁇ D) $), 因而几乎与 $( $) (sqrt{n ⁇ D) 的较低约束值相当, 美元是网络中节点的数量, 美元是它的直径。 我们的分布式解算法模型中的第一个算法是精确的, 负数是最小线的圆轮算法, 在组合优化中, 我们的调解算法框架是强大的内部点方法(IPrc) 和 Laplac 模式的范式, 也就是我们之前的直径平面的直径流, 我们的直径直流和直径直方向的直径直方向的平面图表中, 我们的直径直地算法中, 将使用这个直径直地算法, 和直径直的直径直地算法, 直地算法的直地, 我们的直地算法的直地, 我们的直地算法的直地算法的直地算法是, 直地算法是, 我们的直地, 直地算法的直到前的直到前的直地, 直地,,, 直, 直地, 直地, 直, 直地, 直地, 直到前的直到前的直到前的直到前的轨道的轨道上的, 直, 直, 直到前的直到前的算法, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直到前的轨道, 直, 直, 直, 和直, 直, 直, 直, 直, 直,