We present a data-driven algorithm for efficiently computing stochastic control policies for general joint chance constrained optimal control problems. Our approach leverages the theory of kernel distribution embeddings, which allows representing expectation operators as inner products in a reproducing kernel Hilbert space. This framework enables approximately reformulating the original problem using a dataset of observed trajectories from the system without imposing prior assumptions on the parameterization of the system dynamics or the structure of the uncertainty. By optimizing over a finite subset of stochastic open-loop control trajectories, we relax the original problem to a linear program over the control parameters that can be efficiently solved using standard convex optimization techniques. We demonstrate our proposed approach in simulation on a system with nonlinear non-Markovian dynamics navigating in a cluttered environment.
翻译:我们提出了一个数据驱动算法,以高效计算随机控制政策,解决总体共同机会制约的最佳控制问题。我们的方法利用内核分布嵌入理论,在复制的Hilbert空间中将预期操作者作为内产产品来代表内产产品。这个框架可以使用系统观测到的轨迹数据集来大致地重塑最初的问题,而不必事先对系统动态的参数化或不确定性的结构进行假设。通过优化一定的零散开放通道控制轨迹,我们将最初的问题放宽为线性程序,使其适用于使用标准convex优化技术可以有效解决的控制参数。我们展示了我们在非线性非Markovian动态在杂乱环境中航行的系统模拟中的拟议方法。