Leveraging large-scale pre-training, vision foundational models showcase notable performance benefits. Recent segmentation algorithms for natural scenes have advanced significantly. However, existing models still struggle to automatically segment personalized instances in dense and crowded scenarios, where severe occlusions, scale variations, and background clutter pose a challenge to accurately delineate densely packed instances of the target object. To address this, we propose PerSense, an end-to-end, training-free, and model-agnostic one-shot framework for Personalized instance Segmentation in dense images. We develop a new baseline capable of automatically generating instance-level point prompts via proposing a novel Instance Detection Module (IDM) that leverages density maps, encapsulating spatial distribution of objects in an image. To mitigate false positives within generated point prompts, we design Point Prompt Selection Module (PPSM). Both IDM and PPSM transform density maps into personalized precise point prompts for instance-level segmentation and offer a seamless integration in our model-agnostic framework. We also introduce a feedback mechanism which enables PerSense to improve the accuracy of density maps by automating the exemplar selection process for density map generation. To promote algorithmic advances and effective tools for this relatively underexplored task, we introduce PerSense-D, a diverse dataset exclusive to personalized instance segmentation in dense images. Our extensive experiments establish PerSense superiority in dense scenarios by achieving an mIoU of 71.61% on PerSense-D, outperforming recent SOTA models by significant margins of +47.16%, +42.27%, +8.83%, and +5.69%. Additionally, our qualitative findings demonstrate the adaptability of our framework to images captured in-the-wild.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员