Kullback-Leibler (KL) divergence is one of the most important divergence measures between probability distributions. In this paper, we prove several properties of KL divergence between multivariate Gaussian distributions. First, for any two $n$-dimensional Gaussian distributions $\mathcal{N}_1$ and $\mathcal{N}_2$, we give the supremum of $KL(\mathcal{N}_1||\mathcal{N}_2)$ when $KL(\mathcal{N}_2||\mathcal{N}_1)\leq \varepsilon\ (\varepsilon>0)$. For small $\varepsilon$, we show that the supremum is $\varepsilon + 2\varepsilon^{1.5} + O(\varepsilon^2)$. This quantifies the approximate symmetry of small KL divergence between Gaussians. We also find the infimum of $KL(\mathcal{N}_1||\mathcal{N}_2)$ when $KL(\mathcal{N}_2||\mathcal{N}_1)\geq M\ (M>0)$. We give the conditions when the supremum and infimum can be attained. Second, for any three $n$-dimensional Gaussians $\mathcal{N}_1$, $\mathcal{N}_2$, and $\mathcal{N}_3$, we find an upper bound of $KL(\mathcal{N}_1||\mathcal{N}_3)$ if $KL(\mathcal{N}_1||\mathcal{N}_2)\leq \varepsilon_1$ and $KL(\mathcal{N}_2||\mathcal{N}_3)\leq \varepsilon_2$ for $\varepsilon_1,\varepsilon_2\ge 0$. For small $\varepsilon_1$ and $\varepsilon_2$, we show the upper bound is $3\varepsilon_1+3\varepsilon_2+2\sqrt{\varepsilon_1\varepsilon_2}+o(\varepsilon_1)+o(\varepsilon_2)$. This reveals that KL divergence between Gaussians follows a relaxed triangle inequality. Importantly, all the bounds in the theorems presented in this paper are independent of the dimension $n$. Finally, We discuss the applications of our theorems in explaining counterintuitive phenomenon of flow-based model, deriving deep anomaly detection algorithm, and extending one-step robustness guarantee to multiple steps in safe reinforcement learning.
翻译:Kullback- Leiber (KL) 是概率分布中最重要的差值之一 。 在本文中, 我们证明多维的高斯分布中存在一些 KL 差值 。 首先, 对于任何两个美元以上的高斯分布 $mathcal{N ⁇ 1美元 和$mathcal{N ⁇ 2美元, 我们给出了 $K( mathcal{N ⁇ 1}1美元) 的上调值。 当高地和高地之间的小KL差值( massal=N ⁇ 2美元) 时, 我们也可以在 $K\ massal_ mal_ mal_ malassal=0美元 。 当高地和高地之间的小差值( massal_ massal2美元) 时, 我们也可以在 $K\\\\\ mal=ma\ mal_ mal_ mal2美元 。