Kullback-Leibler (KL) divergence is one of the most important divergence measures between probability distributions. In this paper, we prove several properties of KL divergence between multivariate Gaussian distributions. First, for any two $n$-dimensional Gaussian distributions $\mathcal{N}_1$ and $\mathcal{N}_2$, we give the supremum of $KL(\mathcal{N}_1||\mathcal{N}_2)$ when $KL(\mathcal{N}_2||\mathcal{N}_1)\leq \varepsilon\ (\varepsilon>0)$. For small $\varepsilon$, we show that the supremum is $\varepsilon + 2\varepsilon^{1.5} + O(\varepsilon^2)$. This quantifies the approximate symmetry of small KL divergence between Gaussians. We also find the infimum of $KL(\mathcal{N}_1||\mathcal{N}_2)$ when $KL(\mathcal{N}_2||\mathcal{N}_1)\geq M\ (M>0)$. We give the conditions when the supremum and infimum can be attained. Second, for any three $n$-dimensional Gaussians $\mathcal{N}_1$, $\mathcal{N}_2$, and $\mathcal{N}_3$, we find an upper bound of $KL(\mathcal{N}_1||\mathcal{N}_3)$ if $KL(\mathcal{N}_1||\mathcal{N}_2)\leq \varepsilon_1$ and $KL(\mathcal{N}_2||\mathcal{N}_3)\leq \varepsilon_2$ for $\varepsilon_1,\varepsilon_2\ge 0$. For small $\varepsilon_1$ and $\varepsilon_2$, we show the upper bound is $3\varepsilon_1+3\varepsilon_2+2\sqrt{\varepsilon_1\varepsilon_2}+o(\varepsilon_1)+o(\varepsilon_2)$. This reveals that KL divergence between Gaussians follows a relaxed triangle inequality. Importantly, all the bounds in the theorems presented in this paper are independent of the dimension $n$. Finally, We discuss the applications of our theorems in explaining counterintuitive phenomenon of flow-based model, deriving deep anomaly detection algorithm, and extending one-step robustness guarantee to multiple steps in safe reinforcement learning.


翻译:Kullback- Leiber (KL) 是概率分布中最重要的差值之一 。 在本文中, 我们证明多维的高斯分布中存在一些 KL 差值 。 首先, 对于任何两个美元以上的高斯分布 $mathcal{N ⁇ 1美元 和$mathcal{N ⁇ 2美元, 我们给出了 $K( mathcal{N ⁇ 1}1美元) 的上调值。 当高地和高地之间的小KL差值( massal=N ⁇ 2美元) 时, 我们也可以在 $K\ massal_ mal_ mal_ malassal=0美元 。 当高地和高地之间的小差值( massal_ massal2美元) 时, 我们也可以在 $K\\\\\ mal=ma\ mal_ mal_ mal2美元 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
M365热招 | N+Offer“职”等你来
微软招聘
0+阅读 · 2021年3月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
0+阅读 · 2023年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
M365热招 | N+Offer“职”等你来
微软招聘
0+阅读 · 2021年3月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员