Human intention is an internal, mental characterization for acquiring desired information. From interactive interfaces containing either textual or graphical information, intention to perceive desired information is subjective and strongly connected with eye gaze. In this work, we determine such intention by analyzing real-time eye gaze data with a low-cost regular webcam. We extracted unique features (e.g., Fixation Count, Eye Movement Ratio) from the eye gaze data of 31 participants to generate a dataset containing 124 samples of visual intention for perceiving textual or graphical information, labeled as either TEXT or IMAGE, having 48.39% and 51.61% distribution, respectively. Using this dataset, we analyzed 5 classifiers, including Support Vector Machine (SVM) (Accuracy: 92.19%). Using the trained SVM, we investigated the variation of visual intention among 30 participants, distributed in 3 age groups, and found out that young users were more leaned towards graphical contents whereas older adults felt more interested in textual ones. This finding suggests that real-time eye gaze data can be a potential source of identifying visual intention, analyzing which intention aware interactive interfaces can be designed and developed to facilitate human cognition.
翻译:人类意图是获取所需信息的内在心理特征。 从包含文字或图形信息的互动式界面中, 感知所需信息的意图是主观的, 并且与眼睛凝视有强烈的联系。 在这项工作中, 我们通过以低成本的常规网络摄像头分析实时目视数据来确定这种意图。 我们从31名参与者的眼视数据中提取了独特的特征( 例如, 固定计数、 眼动比率 ) 。 我们从31名参与者的眼视数据中提取了一个包含124个视觉意图样本的数据集, 用于感知文字或图形信息的视觉意图, 标记为TEXT或IMAGE, 分别有48.39 % 和 51.61% 的分布。 我们利用这个数据集分析了5个分类器, 包括支持矢量机器( SVM)( 准确性: 92.19% ) 。 我们利用经过培训的 SVM, 调查了30名参与者的视觉意图的变化, 分布在3 年龄组中, 发现年轻用户更倾向于图形内容, 而老年人对文字信息更感兴趣 。 这一发现, 实时眼视视像数据可能是识别视觉意图的潜在来源,,, 分析了解哪些意图可以设计和开发, 以方便人类认知界面。