We propose semi- and non-parametric methods to estimate conditional interventional effects in the setting of two discrete mediators whose causal ordering is unknown. Average interventional indirect effects have been shown to decompose an average treatment effect into a direct effect and interventional indirect effects that quantify effects of hypothetical interventions on mediator distributions. Yet these effects may be heterogeneous across the covariate distribution. We consider the problem of estimating these effects at particular points. We propose an influence-function based estimator of the projection of the conditional effects onto a working model, and show under some conditions that we can achieve root-n consistent and asymptotically normal estimates. Second, we propose a fully non-parametric approach to estimation and show the conditions where this approach can achieve oracle rates of convergence. Finally, we propose a sensitivity analysis for the conditional effects in the presence of mediator-outcome confounding. We propose estimating bounds on the conditional effects using these same methods, and show that these results easily extend to allow for influence-function based estimates of the bounds on the average effects. We conclude examining heterogeneous effects with respect to the effect of COVID-19 vaccinations on depression during February 2021.
翻译:我们提出了半参数和非参数方法来估计在两个离散介质的情境下的条件干预效应,这两个介质的因果排序是未知的。平均干预间接效应已被证明可以将平均处理效应分解为直接效应和量化介质分布的假想干预效应的干预间接效应。然而,这些效应在协变量分布上可能是异质的。我们考虑在特定点估计这些效应的问题。我们提出了一个基于影响函数的估计方法来将条件效应投影到工作模型上,并且在一些条件下可以实现根n一致和渐近正常的估计。其次,我们提出了完全非参数的方法来估计并展示条件效应可以实现Oracle收敛率的条件。最后,我们在存在介质-结果混淆的情况下提出了对条件效应的敏感性分析。我们提出使用这些同样的方法来估计条件效应的上下限,并展示这些结果可以轻松扩展以允许基于影响函数的平均效应边界的估计。最后,我们考虑了COVID-19疫苗接种对2021年2月抑郁症的效应异质性。