Text Generation aims to produce plausible and readable text in human language from input data. The resurgence of deep learning has greatly advanced this field by neural generation models, especially the paradigm of pretrained language models (PLMs). Grounding text generation on PLMs is seen as a promising direction in both academia and industry. In this survey, we present the recent advances achieved in the topic of PLMs for text generation. In detail, we begin with introducing three key points of applying PLMs to text generation: 1) how to encode the input data as representations preserving input semantics which can be fused into PLMs; 2) how to design a universal and performant architecture of PLMs served as generation models; and 3) how to optimize PLMs given the reference text and ensure the generated text satisfying special text properties. Then, we figure out several challenges and future directions within each key point. Next, we present a summary of various useful resources and typical text generation applications to work with PLMs. Finally, we conclude and summarize the contribution of this survey.
翻译:深层学习通过神经生成模型,特别是预先培训的语言模型的范例,大大推动了这一领域的发展。在学术界和工业界,以PLM为基础生成文本被视为一个有希望的方向。在这次调查中,我们介绍了在PLM为文本生成专题方面取得的近期进展。我们首先详细介绍了将PLM应用于文本生成的三个关键点:1)如何将输入数据编码为保留可融入PLM的输入语义的表示;2)如何设计出一种通用的、性能的PLM为生成模型的架构;3)如何优化PLM为参考文本提供参考文本并确保生成的文本满足特殊文本特性。然后,我们在每个关键点中列出若干挑战和今后的方向。接下来,我们概要介绍与PLMS合作的各种有用资源和典型文本生成应用程序。最后,我们总结并总结了本次调查的贡献。