In the era of Industry 4.0, cognitive computing and its enabling technologies (Artificial Intelligence, Machine Learning, etc.) allow to define systems able to support maintenance by providing relevant information, at the right time, retrieved from structured companies' databases, and unstructured documents, like technical manuals, intervention reports, and so on. Moreover, contextual information plays a crucial role in tailoring the support both during the planning and the execution of interventions. Contextual information can be detected with the help of sensors, wearable devices, indoor and outdoor positioning systems, and object recognition capabilities (using fixed or wearable cameras), all of which can collect historical data for further analysis. In this work, we propose a cognitive system that learns from past interventions to generate contextual recommendations for improving maintenance practices in terms of time, budget, and scope. The system uses formal conceptual models, incremental learning, and ranking algorithms to accomplish these objectives.
翻译:在工业时代4.0,认知计算及其赋能技术(人工智能、机器学习等)能够界定能够支持维护的系统,方法是在适当的时候提供从结构化公司数据库检索的相关信息,以及技术手册、干预报告等非结构化文件。此外,背景信息在规划和实施干预期间调整支持方面发挥着关键作用。在传感器、可磨损装置、室内和室外定位系统以及物体识别能力(使用固定或可磨损的相机)的帮助下,可以检测到背景信息,所有这些能力都能够收集历史数据以供进一步分析。在这项工作中,我们提议建立一个认知系统,从以往的干预措施中学习,以产生背景建议,改进时间、预算和范围方面的维护做法。该系统利用正式的概念模型、渐进学习和排序算法来实现这些目标。