We extend the formalisation of confluence results in Kleene algebras to a formalisation of coherent confluence proofs. For this, we introduce the structure of higher globular Kleene algebra, a higher-dimensional generalisation of modal and concurrent Kleene algebra. We calculate a coherent Church-Rosser theorem and a coherent Newman's lemma in higher Kleene algebras by equational reasoning. We instantiate these results in the context of higher rewriting systems modelled by polygraphs.
翻译:我们将Kleene代数中汇合结果的正规化扩展至一致汇合证据的正规化。 为此,我们引入了高球Kleene代数结构,即高球Kleene代数结构,高维的模型和并行Kleene代数的常规化。我们用方程推理来计算一个一致的Church-Roser定理和高Kleene代数中一致的Newman的 Lemma。我们将这些结果在由测算仪模拟的较高重写系统的背景下进行回调。