Given the success of reinforcement learning (RL) in various domains, it is promising to explore the application of its methods to the development of intelligent and autonomous cyber agents. Enabling this development requires a representative RL training environment. To that end, this work presents CyGIL: an experimental testbed of an emulated RL training environment for network cyber operations. CyGIL uses a stateless environment architecture and incorporates the MITRE ATT&CK framework to establish a high fidelity training environment, while presenting a sufficiently abstracted interface to enable RL training. Its comprehensive action space and flexible game design allow the agent training to focus on particular advanced persistent threat (APT) profiles, and to incorporate a broad range of potential threats and vulnerabilities. By striking a balance between fidelity and simplicity, it aims to leverage state of the art RL algorithms for application to real-world cyber defence.


翻译:鉴于加强学习在各个领域的成功,有希望探索如何运用其方法发展智能和自主网络代理物,实现这一发展需要具有代表性的RL培训环境。为此,这项工作向CyGIL展示了网络网络操作模拟RL培训环境的实验性试验台:CyGIL为网络网络操作提供了效仿的RL培训环境。CyGIL使用一个无国籍环境架构,并纳入MITRE ATT和CK框架,以建立一个高忠诚培训环境,同时提供一个足够抽象的界面,以便能够进行RL培训。它的全面行动空间和灵活的游戏设计使代理物培训能够侧重于特定先进的持久威胁(APT)特征,并纳入广泛的潜在威胁和脆弱性。通过在忠诚和简单之间取得平衡,它旨在利用最新RL算法应用于现实世界网络防御。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
24+阅读 · 2021年6月25日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员