The higher-order generalized singular value decomposition (HO-GSVD) is a matrix factorization technique that extends the GSVD to $N \ge 2$ data matrices, and can be used to identify shared subspaces in multiple large-scale datasets with different row dimensions. The standard HO-GSVD factors $N$ matrices $A_i\in\mathbb{R}^{m_i\times n}$ as $A_i=U_i\Sigma_iV^{\text{T}}$, but requires that each of the matrices $A_i$ has full column rank. We propose a reformulation of the HO-GSVD that extends its applicability to rank-deficient data matrices $A_i$. If the matrix of stacked $A_i$ has full rank, we show that the properties of the original HO-GSVD extend to our reformulation. The HO-GSVD captures shared right singular vectors of the matrices $A_i$, and we show that our method also identifies directions that are unique to the image of a single matrix. We also extend our results to the higher-order cosine-sine decomposition (HO-CSD), which is closely related to the HO-GSVD. Our extension of the standard HO-GSVD allows its application to datasets with $m_i < n$, such as are encountered in bioinformatics, neuroscience, control theory or classification problems.


翻译:高阶通用单值分解(HO-GSVD)是一种矩阵化因素技术,将GSVD扩大到$N\ge 2美元的数据矩阵,可用于确定多个大型数据集中具有不同行尺寸的共享子空间。标准HOS-GSVD因子因子($A_i\in\in\mathbb{R ⁇ m_i_ti times n}$$A_i=U_i\Sigma_i{Vlext{T ⁇ $),但要求每个矩阵都具有完整栏级。我们提议重订HO-GSVD,将其适用性扩大到级别不高的数据矩阵 $A_ i。如果堆叠的美元矩阵完全排名,我们显示原始的HO- GSVD的属性延伸到我们的重整。HO-GSVD的共享的正向右矢量为$A_i,我们显示我们的方法也确定了与单一矩阵的图像独特的方向,我们也将我们的标准数据序列延伸到了SOVDA。

0
下载
关闭预览

相关内容

奇异值是矩阵里的概念,一般通过奇异值分解定理求得。设A为m*n阶矩阵,q=min(m,n),A*A的q个非负特征值的算术平方根叫作A的奇异值。奇异值分解是线性代数和矩阵论中一种重要的矩阵分解法,适用于信号处理和统计学等领域。
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
41+阅读 · 2020年9月6日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
已删除
将门创投
3+阅读 · 2019年10月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年10月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员