Social recommender systems have drawn a lot of attention in many online web services, because of the incorporation of social information between users in improving recommendation results. Despite the significant progress made by existing solutions, we argue that current methods fall short in two limitations: (1) Existing social-aware recommendation models only consider collaborative similarity between items, how to incorporate item-wise semantic relatedness is less explored in current recommendation paradigms. (2) Current social recommender systems neglect the entanglement of the latent factors over heterogeneous relations (e.g., social connections, user-item interactions). Learning the disentangled representations with relation heterogeneity poses great challenge for social recommendation. In this work, we design a Disentangled Graph Neural Network (DGNN) with the integration of latent memory units, which empowers DGNN to maintain factorized representations for heterogeneous types of user and item connections. Additionally, we devise new memory-augmented message propagation and aggregation schemes under the graph neural architecture, allowing us to recursively distill semantic relatedness into the representations of users and items in a fully automatic manner. Extensive experiments on three benchmark datasets verify the effectiveness of our model by achieving great improvement over state-of-the-art recommendation techniques. The source code is publicly available at: https://github.com/HKUDS/DGNN.


翻译:社会建议系统在许多在线网络服务中引起了许多关注,因为用户之间将社会信息纳入到改进建议结果的工作中。尽管现有解决方案取得了显著进展,但我们认为,目前的方法有两大局限性:(1) 现有的社会觉悟建议模式只考虑项目之间的协作相似性,在目前的建议模式中,较少探讨如何纳入项目自理的语义关联性。(2) 目前的社会建议系统忽视了各种关系(例如社会联系、用户-项目互动)的潜在因素的纠缠(例如,社会联系、用户-项目互动)。学习与差异性的关系的不相干的表现对社会建议构成巨大挑战。在这项工作中,我们设计了一个分解的图形神经网络(DGNNN),结合了潜在的记忆单元,使DGNN能够维持不同类型用户和项目连接的因子化表述。此外,我们在图形神经结构下设计了新的记忆提示信息传播和汇总计划,使我们能够以完全自动的方式在用户和项目的表述中反复地将语义相关关系进行分解。在三种基准数据单元上进行广泛的实验。</s>

0
下载
关闭预览

相关内容

【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关VIP内容
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员