Dance-driven music generation aims to generate musical pieces conditioned on dance videos. Previous works focus on monophonic or raw audio generation, while the multiinstruments scenario is under-explored. The challenges of the dance-driven multi-instruments music (MIDI) generation are two-fold: 1) no publicly available multi-instruments MIDI and video paired dataset and 2) the weak correlation between music and video. To tackle these challenges, we build the first multi-instruments MIDI and dance paired dataset (D2MIDI). Based on our proposed dataset, we introduce a multi-instruments MIDI generation framework (Dance2MIDI) conditioned on dance video. Specifically, 1) to model the correlation between music and dance, we encode the dance motion using the GCN, and 2) to generate harmonious and coherent music, we employ Transformer to decode the MIDI sequence. We evaluate the generated music of our framework trained on D2MIDI dataset and demonstrate that our method outperforms existing methods. The data and code are available on https://github.com/Dance2MIDI/Dance2MIDI


翻译:由舞蹈驱动的音乐制作旨在产生以舞蹈录像为条件的音乐片段。以前的工作重点是单声或原始声频生成,而多种工具的情景则未得到充分探讨。舞蹈驱动的多工具音乐(MIDI)生成的挑战有两个方面:(1) 没有公开的多种工具MIDI和视频配对数据集,(2) 音乐和视频之间的相关性薄弱。为了应对这些挑战,我们建立了第一个多工具MIDI和舞蹈配对数据集(D2MIDI)。根据我们提议的数据集,我们引入了一个多工具MIDI生成框架(Dance2MIDI),以舞蹈视频为条件。具体来说,1)为模拟音乐与舞蹈之间的相互关系,我们用GCN对舞蹈运动进行编码,2)为产生和谐和连贯的音乐,我们使用变换器解码MIDI序列。我们评估了我们D2MIDI数据集培训的框架生成的音乐,并证明我们的方法超越了现有方法。数据和代码可以在 https://github.com/DINGIS2/DIMIMance上查阅。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月15日
Arxiv
20+阅读 · 2020年6月8日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员