The peridynamic theory brings advantages in dealing with discontinuities, dynamic loading, and non-locality. The integro-differential formulation of peridynamics poses challenges to numerical solutions of complicated and practical problems. Some important issues attract much attention, such as the computation of infinite domains, the treatment of softening of boundaries due to an incomplete horizon, and time error accumulation in dynamic processes. In this work, we develop the \textit{peridynamic boundary element method} (PD-BEM). The numerical examples demonstrate that the PD-BEM exhibits several features. First, for non-destructive cases, the PD-BEM can be one to two orders of magnitude faster than the peridynamic meshless particle method (PD-MPM) that directly discretizes the computational domains; second, it eliminates the time accumulation error, and thus conserves the total energy much better than the PD-MPM; third, it does not exhibit spurious boundary softening phenomena. For destructive cases where new boundaries emerge during the loading process, we propose a coupling scheme where the PD-MPM is applied to the cracked region and the PD-BEM is applied to the un-cracked region such that the time of computation can be significantly reduced.


翻译:远地动力学理论在处理不连续、动态装载和非局部性方面带来了优势。 远地动力学的内在差异性配方对复杂和实际问题的数字解决方案提出了挑战。 一些重要问题吸引了许多关注,例如计算无限域、处理由于不完全的地平线而软化的边界和动态过程中的时间错误积累。 在这项工作中,我们开发了 & textit{peririval 边界元素方法} (PD-BEM) 。 数字实例表明PD- BEM 具有若干特征。 首先,对于非破坏性案例,PD-BEM 可能比直接将计算区域分解的无渗透性中微粒方法(PD-MPM) 高出一至两级。 其次,它消除了时间积累错误,从而保存的总能量比PD- MPM (PD-M) (PD-BEM) 还要好得多; 第三,它没有表现出虚假的边界软化现象。 对于在装载过程中出现新边界的破坏性案例,我们提出了一个组合计划,即PD- MPM 将PD- MPM 应用到断裂后区域,PD-D-M 的计算可以大大降低。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员