This paper considers reparameterization invariant Bayesian point estimates and credible regions of model parameters for scientific inference and communication. The effect of intrinsic loss function choice in Bayesian intrinsic estimates and regions is studied with the following findings. A particular intrinsic loss function, using Kullback-Leibler divergence from the full model to the restricted model, has strong connection to a Bayesian predictive criterion, which produces point estimates with the best predictive performance. An alternative intrinsic loss function, using Kullback-Leibler divergence from the restricted model to the full model, produces estimates with interesting frequency properties for at least some commonly used distributions, that is, unbiased minimum variance estimates of the location and scale parameters.
翻译:本文考虑的是不同贝叶斯点数估计数和科学推断和通信的可靠模型参数区域中的重新校准。对贝叶斯人内在估计和区域内内在损失函数选择的影响进行了研究,其结果如下。一个特定的内在损失函数,使用Kullback-Leibeller从完整模型到有限模型的差异,与贝叶斯人的预测标准密切相关,该标准产生最佳预测性能的点估计数。另一个替代的内在损失函数,使用Kullback-Lebeller从有限模型到完整模型的差异,生成至少某些常用分布的有趣的频率特性估计数,即对地点和规模参数的公平最低差异估计数。