This work builds a novel point process and tools to use the Hawkes process with interval-censored data. Such data records the aggregated counts of events solely during specific time intervals -- such as the number of patients admitted to the hospital or the volume of vehicles passing traffic loop detectors -- and not the exact occurrence time of the events. First, we establish the Mean Behavior Poisson (MBP) process, a novel Poisson process with a direct parameter correspondence to the popular self-exciting Hawkes process. The event intensity function of the MBP is the expected intensity over all possible Hawkes realizations with the same parameter set. We fit MBP in the interval-censored setting using an interval-censored Poisson log-likelihood (IC-LL). We use the parameter equivalence to uncover the parameters of the associated Hawkes process. Second, we introduce two novel exogenous functions to distinguish the exogenous from the endogenous events. We propose the multi-impulse exogenous function when the exogenous events are observed as event time and the latent homogeneous Poisson process exogenous function when the exogenous events are presented as interval-censored volumes. Third, we provide several approximation methods to estimate the intensity and compensator function of MBP when no analytical solution exists. Fourth and finally, we connect the interval-censored loss of MBP to a broader class of Bregman divergence-based functions. Using the connection, we show that the current state of the art in popularity estimation (Hawkes Intensity Process (HIP) (Rizoiu et al.,2017b)) is a particular case of the MBP process. We verify our models through empirical testing on synthetic data and real-world data. We find that on real-world datasets that ourMBP process outperforms HIP for the task of popularity prediction.
翻译:这项工作建立了一个新点进程和工具, 用于使用 Hawkes 进程, 并配有间歇检查数据。 这些数据记录了仅仅在特定时间间隔( 例如医院接收的病人数量或通过交通环路探测器的车辆数量), 而不是事件的准确发生时间。 首先, 我们建立了 Bay Behavior Poisson (MBP) (MBP) 进程, 是一个新颖的 Poisson 进程, 与流行的自我激发 Hawkes 进程直接对应参数。 MBP 事件强度功能是所有可能的 Hawkes 实现的预期强度, 并设定了相同的参数。 我们将MBBP 的间隔- 时间( 我们用间隙- 检查访问日志日志设置了时间), 我们使用参数等值设置了两个新的外源功能, 来区分内生事件与内生事件直接对应的相。 我们用外生事件观察到的多隐含性外源函数 20, 当外生事件显示时, 我们用隐含的光质 Poisson 进程 。 当外向外生事件显示外演算时, 我们用的外演算显示的是 将MCBBBBBS 的内断断断断断断的断断断断断断断断数据 。 。 第三, 数据, 我们用一个特定的数据- c 数据, 正在 直 直 立数据 直 直, 我们提供数据 立数据 向 向 直 向 向 将 立 立 立 立 立 立 立, 我们用, 我们用 数据 立 向, 向 向, 向 向 向 向 向 向 立 立 立 立 立 立 立 立 立 立 立 立 立 立 立 数据 数据 立, 立 立 立 立 立 立 立 立 数据, 立 立 立 立 立 立 立 立 立 立 立 数据 数据 数据 数据 立 立 数据 数据 数据 数据 数据 向 立 立 立 立 立 立