Merge Resolution (MRes [Beyersdorff et al. J. Autom. Reason.'2021] ) is a refutational proof system for quantified Boolean formulas (QBF). Each line of MRes consists of clauses with only existential literals, together with information of countermodels stored as merge maps. As a result, MRes has strategy extraction by design. The QRAT [Heule et al. J. Autom. Reason.'2017] proof system was designed to capture QBF preprocessing. QRAT can simulate both the expansion-based proof system $\forall$Exp+Res and CDCL-based QBF proof system LD-Q-Res. A family of false QBFs called SquaredEquality formulas were introduced in [Beyersdorff et al. J. Autom. Reason.'2021] and shown to be easy for MRes but need exponential size proofs in Q-Res, QU-Res, CP+$\forall$red, $\forall$Exp+Res, IR-calc and reductionless LD-Q-Res. As a result none of these systems can simulate MRes. In this paper, we show a short QRAT refutation of the SquaredEquality formulas. We further show that QRAT strictly p-simulates MRes. Besides highlighting the power of QRAT system, this work also presents the first simulation result for MRes.
翻译:合并解析(Meyersdorff et al. J. J. Autom. 理由. 2021) 是量化的布尔公式(QBF)的反驳验证系统。 MRes的每行都包含只有存在文字的条款,以及存储为合并地图的折叠模型的信息。因此, MRes有设计的战略提取。QRAT [Heule et al. J. Atorm. 理由. 2017] 验证系统的设计是为了捕捉QBF 预处理。QRAT 可以模拟基于扩展的验证系统$\all$Exp+Res和基于CDCLCLF的QBF验证系统LD-Q-Res。 在[Beyersdorf 和J. Atom. 理由' 20211 中引入了被称为平价公式的假的QBFS系列。 QRA、QU-Res+$@Fall+Resermainal-Resral 系统显示这些平质的快速解算结果。