One approach to understanding complex data is to study its shape through the lens of algebraic topology. While the early development of topological data analysis focused primarily on static data, in recent years, theoretical and applied studies have turned to data that varies in time. A time-varying collection of metric spaces as formed, for example, by a moving school of fish or flock of birds, can contain a vast amount of information. There is often a need to simplify or summarize the dynamic behavior. We provide an introduction to topological summaries of time-varying metric spaces including vineyards [19], crocker plots [56], and multiparameter rank functions [37]. We then introduce a new tool to summarize time-varying metric spaces: a crocker stack. Crocker stacks are convenient for visualization, amenable to machine learning, and satisfy a desirable continuity property which we prove. We demonstrate the utility of crocker stacks for a parameter identification task involving an influential model of biological aggregations [58]. Altogether, we aim to bring the broader applied mathematics community up-to-date on topological summaries of time-varying metric spaces.
翻译:一种了解复杂数据的方法是通过代数表学的透镜来研究其形状。虽然早期的地貌数据分析主要是以静态数据为主,但近年来,理论和应用研究已经转向了时间变化的数据。如通过移动的鱼群或鸟群群群群群群群群群体组成的衡量空间,可以分时间收集大量的信息。常常需要简化或总结动态行为。我们介绍了时间变化的衡量空间(包括葡萄园[19]、捕鲸地块[56]和多参数级函数[37])的地貌摘要。我们随后采用了一种新工具来总结时间变化的计量空间:一个鳄鱼堆。克罗克堆群群体便于视觉化,便于机器学习,并满足我们所证明的可取的连续性属性。我们展示了鳄鱼堆群对于涉及有影响力的生物总和模型的参数识别任务的有用性。我们的目标是将更广泛的应用数学群集更新到时间变化计量空间的地形摘要上。