We prove a tight lower bound (up to constant factors) on the sample complexity of any non-interactive local differentially private protocol for optimizing a linear function over the simplex. This lower bound also implies a tight lower bound (again, up to constant factors) on the sample complexity of any non-interactive local differentially private protocol implementing the exponential mechanism. These results reveal that any local protocol for these problems has exponentially worse dependence on the dimension than corresponding algorithms in the central model. Previously, Kasiviswanathan et al. (FOCS 2008) proved an exponential separation between local and central model algorithms for PAC learning the class of parity functions. In contrast, our lower bound are quantitatively tight, apply to a simple and natural class of linear optimization problems, and our techniques are arguably simpler.


翻译:事实证明,在任何非互动的本地不同私人协议中,优化简单线性功能的精度的精度(最多是常数因素)在任何非互动的本地不同私人协议中,其精度较低(最多是常数因素 ) 。 这一下限还意味着在任何非互动的本地不同私人协议中,对执行指数机制的精度的精度(同样是常数因素 ) 的精度较低(同样是常数因素 ) 。 这些结果表明,与中央模型中相应的算法相比,任何针对这些问题的本地协议都明显地更加依赖其维度。 Kasiviswanathan 等人(FOCS,2008年) 证明当地和中央模型算法在学习等同功能的精度之间存在着指数分化的分化。 相比之下,我们较低的约束在数量上是紧凑的,适用于简单和自然的线性优化问题,我们的技术可能比较简单。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
6+阅读 · 2017年7月6日
Metric-Distortion Bounds under Limited Information
Arxiv
0+阅读 · 2021年7月6日
Arxiv
0+阅读 · 2021年7月4日
Arxiv
0+阅读 · 2021年7月3日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
6+阅读 · 2017年7月6日
Top
微信扫码咨询专知VIP会员