We recently proposed a new cluster operating system stack, DBOS, centered on a DBMS. DBOS enables unique support for ML applications by encapsulating ML code within stored procedures, centralizing ancillary ML data, providing security built into the underlying DBMS, co-locating ML code and data, and tracking data and workflow provenance. Here we demonstrate a subset of these benefits around two ML applications. We first show that image classification and object detection models using GPUs can be served as DBOS stored procedures with performance competitive to existing systems. We then present a 1D CNN trained to detect anomalies in HTTP requests on DBOS-backed web services, achieving SOTA results. We use this model to develop an interactive anomaly detection system and evaluate it through qualitative user feedback, demonstrating its usefulness as a proof of concept for future work to develop learned real-time security services on top of DBOS.
翻译:我们最近提出了一个新的集束操作系统堆叠,DBOS, 以DBMS为中心。 DBOS 通过将ML码封装在存储程序内,集中辅助ML数据,在基础DBMS中提供安全,将ML码和数据合用同一位置,并跟踪数据和工作流程出处,为MBMS提供了独特的支持。在这里,我们展示了围绕两个ML应用程序的一系列好处。我们首先展示了使用GPU的图像分类和物体探测模型可以作为DBOS的存储程序,并具有对现有系统的性能竞争力。然后,我们展示了1DCNN, 用于检测DBOS支持的网络服务HTTP请求中的异常现象,实现SOTA结果。我们利用这一模型开发交互式异常探测系统,并通过高质量的用户反馈对其进行评估,展示其作为未来工作概念的证明,在DBOS上开发学习的实时安全服务。