Given a real-valued hypothesis class $\mathcal{H}$, we investigate under what conditions there is a differentially private algorithm which learns an optimal hypothesis from $\mathcal{H}$ given i.i.d. data. Inspired by recent results for the related setting of binary classification (Alon et al., 2019; Bun et al., 2020), where it was shown that online learnability of a binary class is necessary and sufficient for its private learnability, Jung et al. (2020) showed that in the setting of regression, online learnability of $\mathcal{H}$ is necessary for private learnability. Here online learnability of $\mathcal{H}$ is characterized by the finiteness of its $\eta$-sequential fat shattering dimension, ${\rm sfat}_\eta(\mathcal{H})$, for all $\eta > 0$. In terms of sufficient conditions for private learnability, Jung et al. (2020) showed that $\mathcal{H}$ is privately learnable if $\lim_{\eta \downarrow 0} {\rm sfat}_\eta(\mathcal{H})$ is finite, which is a fairly restrictive condition. We show that under the relaxed condition $\lim \inf_{\eta \downarrow 0} \eta \cdot {\rm sfat}_\eta(\mathcal{H}) = 0$, $\mathcal{H}$ is privately learnable, establishing the first nonparametric private learnability guarantee for classes $\mathcal{H}$ with ${\rm sfat}_\eta(\mathcal{H})$ diverging as $\eta \downarrow 0$. Our techniques involve a novel filtering procedure to output stable hypotheses for nonparametric function classes.


翻译:根据真实价值的假设等级 $\ mathcal{H},我们调查在什么条件下有不同的私人算法,从 $\ mathcal{H} 获得 i.d. d. 数据。受相关二进制分类最近结果的启发(Alon 等人, 2019; Bun 等人, 2020) 显示二进制班的在线学习能力对于其私人学习能力是必要和足够的, Jung 等人(202020) 显示在回归设置中, $\ macal{ H} $的在线学习能力对于私人学习是必需的。 $\ mathcal{ H} 的在线学习能力是美元- 美元- 后期脂肪的有限性( 美元; bun等人) 显示,对于所有 美元/ eta> 0 美元, 在私人学习的充足条件中, Jung等人(2020) 显示, 美元/ madcal{ h} 美元是私人学习的 美元,如果 美元- detatamaral_ lexlexal rodeal rodeal) a rodeal rodeal rode rodeal.

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员