Converting electronic health record (EHR) entries to useful clinical inferences requires one to address the poor scalability of existing implementations of Generalized Linear Mixed Models (GLMM) for repeated measures. The major computational bottleneck concerns the numerical evaluation of integrals, which even for the simplest EHR analyses may involve millions of dimensions (one for each patient). The hierarchical likelihood (h-lik) approach to GLMMs is a framework for the estimation of GLMMs that is based on the Laplace Approximation (LA), which replaces integration with numerical optimization, and thus scales very well with dimensionality. We present a high-performance implementation of the h-lik for GLMMs in the R package TMB. Using this approach, we examined the relation of serum potassium measurements and survival in the Cerner Real World Data (CRWD) EHR database. Analyzing this data requires the evaluation of an integral in over 3 million dimensions. We also assessed the scalability and accuracy of LA in smaller samples of 1 and 10% size of the full dataset that were analyzed via the a) original, interconnected Generalized Linear Models (iGLM), approach to h-lik, b) Adaptive Gaussian Hermite (AGH) and c) the gold standard of Markov Chain Monte Carlo (MCMC) for multivariate integration. Random effects estimates generated by the LA were within 10% of the values obtained by the iGLMs, AGH and MCMC techniques. The H-lik approach was 4-30 times faster than AGH and nearly 800 times faster than MCMC. We found that the combination of the LA and AD offers a computationally efficient, numerically accurate approach for the analysis of extremely large, real world repeated measures data via the h-lik approach to GLMMs. The clinical inference from our analysis may guide choices of threatment thresholds for treating potassium disorders in the clinic.
翻译:将电子健康记录(EHR)条目转换为有用的临床推断值。 将电子健康记录(EHR)条目转换为有用的临床判断要求用一种方法来解决通用线性混合模型(GLMM)现有实施反复测量的缩放性差。 主要的计算瓶颈涉及对集成体进行数字评估, 即使是简单的 EHR分析, 也可能涉及数百万维度( 每位患者各一个) 。 GLMMM 的等级可能性(h-lik) 方法是一个基于 Laplace Approximation(LAA) 的GLM 估算框架, 以数字优化取代现有的通用线性线性混合模型(GLM ) 的整合性能差。 我们通过A- LM 包 的平流性精度方法, 将血清钾测量和生存在Cerner Real World Data(CRWD) EHR 数据库中, 分析这一数据需要评估300多万维度的组合值。 我们还评估了LA的缩度和精确度的大小为1%和10%的样本, 通过A- mal- mal- mal- mal- mal- mal 数据分析, 通过原始的 Ral- mal- mal- mal 数字的 Ral 数字的 Ral 数据序列的 Ral 数据分析, 10 数字的 Ral-al-al-al 数据序列的测为10 时间提供了一次的精确数据 数据序列的测算法, 数据分析为10 数据序列中, 通过原始的测算法 数据序列的测算取了10 数据序列中, 数据序列的测算取的测算取了10 数据序列的测取了10 数据序列的精确的精确到了10次 数据分析, 数据分析, 数据序列的频率为10-al-al-al-al-al-ral-al-al-al-al-al-al-al-al-al-al-al-ld-al-al-al-al-al-al-al-al-ld-ld-ld-ld-ld-ld-ld-ld-ld-al-al-al-al-ld-ld-