Domains such as manufacturing and medicine crave for continuous monitoring and analysis of their processes, especially in combination with time series as produced by sensors. Time series data can be exploited to, for example, explain and predict concept drifts during runtime. Generally, a certain data volume is required in order to produce meaningful analysis results. However, reliable data sets are often missing, for example, if event streams and times series data are collected separately, in case of a new process, or if it is too expensive to obtain a sufficient data volume. Additional challenges arise with preparing time series data from multiple event sources, variations in data collection frequency, and concept drift. This paper proposes the GENLOG approach to generate reliable event and time series data that follows the distribution of the underlying input data set. GENLOG employs data resampling and enables the user to select different parts of the log data to orchestrate the training of a recurrent neural network for stream generation. The generated data is sampled back to its original sample rate and is embedded into the originating log data file. Overall, GENLOG can boost small data sets and consequently the application of online process mining.


翻译:时间序列数据可用于解释和预测运行期间的概念漂移。一般而言,需要一定的数据量才能产生有意义的分析结果。但是,如果事件流和时间序列数据是单独收集的,如果是新过程,或者如果是事件流和时间序列数据太昂贵,无法获取足够数量的数据,则往往缺少可靠的数据集。从多个事件来源编制时间序列数据、数据收集频率的变化和概念漂移,还会产生额外的挑战。本文建议GENLOG方法产生可靠的事件和时间序列数据,以在基本输入数据集的分布之后产生可靠的事件和时间序列数据。GENLOG采用数据抽样,使用户能够选择日志数据的不同部分,以协调对循环生成的经常性神经网络的培训。生成的数据样本要追溯到最初的样本率,并嵌入原始的日志数据文档中。总体而言,GENLOG可以增强小数据集,从而应用在线进程采矿。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
6+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2017年11月30日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
相关资讯
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员