Automated event detection has emerged as one of the fundamental practices to monitor the behavior of technical systems by means of sensor data. In the automotive industry, these methods are in high demand for tracing events in time series data. For assessing the active vehicle safety systems, a diverse range of driving scenarios is conducted. These scenarios involve the recording of the vehicle's behavior using external sensors, enabling the evaluation of operational performance. In such setting, automated detection methods not only accelerate but also standardize and objectify the evaluation by avoiding subjective, human-based appraisals in the data inspection. This work proposes a novel event detection method that allows to identify frequency-based events in time series data. To this aim, the time series data is mapped to representations in the time-frequency domain, known as scalograms. After filtering scalograms to enhance relevant parts of the signal, an object detection model is trained to detect the desired event objects in the scalograms. For the analysis of unseen time series data, events can be detected in their scalograms with the trained object detection model and are thereafter mapped back to the time series data to mark the corresponding time interval. The algorithm, evaluated on unseen datasets, achieves a precision rate of 0.97 in event detection, providing sharp time interval boundaries whose accurate indication by human visual inspection is challenging. Incorporating this method into the vehicle development process enhances the accuracy and reliability of event detection, which holds major importance for rapid testing analysis.
翻译:暂无翻译