Massive collection and explosive growth of the huge amount of medical data, demands effective compression for efficient storage, transmission and sharing. Readily available visual data compression techniques have been studied extensively but tailored for nature images/videos, and thus show limited performance on medical data which are of different characteristics. Emerging implicit neural representation (INR) is gaining momentum and demonstrates high promise for fitting diverse visual data in target-data-specific manner, but a general compression scheme covering diverse medical data is so far absent. To address this issue, we firstly derive a mathematical explanation for INR's spectrum concentration property and an analytical insight on the design of compression-oriented INR architecture. Further, we design a funnel shaped neural network capable of covering broad spectrum of complex medical data and achieving high compression ratio. Based on this design, we conduct compression via optimization under given budget and propose an adaptive compression approach SCI, which adaptively partitions the target data into blocks matching the concentrated spectrum envelop of the adopted INR, and allocates parameter with high representation accuracy under given compression ratio. The experiments show SCI's superior performance over conventional techniques and wide applicability across diverse medical data.


翻译:大量医疗数据的大规模收集和爆炸性增长,要求有效地压缩大量医疗数据,以便有效地储存、传输和共享。 现成的视觉数据压缩技术已经进行了广泛研究,但专门为自然图像/视频作了专门设计,因此在具有不同特点的医疗数据方面表现有限。 新兴的隐性神经代表(INR)正在形成势头,并显示出以特定目标数据方式适当提供各种视觉数据的高度希望,但迄今还没有一个涵盖各种医疗数据的一般压缩计划。为了解决这个问题,我们首先从数学角度解释IRR的频谱集中特性,并对面向压缩的IRR结构的设计进行分析性的洞察。 此外,我们设计了一个能覆盖广泛复杂医疗数据并实现高压缩率的漏斗型神经网络。基于这一设计,我们通过在特定预算下优化进行压缩,并提议一个适应性压缩方法,将目标数据隔离在与采纳的IRR的集中频谱孔相匹配的区块中,并根据压缩率分配具有高代表性的参数。实验显示SCI公司在常规技术方面的优异性以及广泛适用于各种医疗数据。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
19+阅读 · 2022年10月6日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员