We develop an online probabilistic metric-semantic mapping approach for mobile robot teams relying on streaming RGB-D observations. The generated maps contain full continuous distributional information about the geometric surfaces and semantic labels (e.g., chair, table, wall). Our approach is based on online Gaussian Process (GP) training and inference, and avoids the complexity of GP classification by regressing a truncated signed distance function (TSDF) of the regions occupied by different semantic classes. Online regression is enabled through a sparse pseudo-point approximation of the GP posterior. To scale to large environments, we further consider spatial domain partitioning via an octree data structure with overlapping leaves. An extension to the multi-robot setting is developed by having each robot execute its own online measurement update and then combine its posterior parameters via local weighted geometric averaging with those of its neighbors. This yields a distributed information processing architecture in which the GP map estimates of all robots converge to a common map of the environment while relying only on local one-hop communication. Our experiments demonstrate the effectiveness of the probabilistic metric-semantic mapping technique in 2-D and 3-D environments in both single and multi-robot settings.
翻译:我们为依靠 RGB-D 流流观测的移动机器人团队开发了在线概率性指标-语义图绘制方法。 生成的地图包含关于几何表面和语义标签(如椅子、表、墙)的完整连续分布信息。 我们的方法以在线高山进程(GP)培训和推断为基础,并避免GP分类的复杂性,方法是通过递减不同语义等级所占用区域的脱节的签名远程功能(TSDF),使GP 的图象估计值通过GP 远端微小的假点近似值实现在线回归。 在大环境中,我们进一步考虑通过带重叠叶子的八叶数据结构进行空间域分隔。 我们的多机器人设置扩展到多机器人设置,办法是让每个机器人自己进行在线测量更新,然后通过本地加权的测深度与邻居的测深组合其海象参数。 这可以产生一种分布式的信息处理结构,即所有机器人的GPP地图估计值都集中到环境的共同地图上,同时只依靠本地的一模组通信。 我们的实验显示在单位D 和多位度环境中的单位测量环境2 。