Creating and maintaining an accurate representation of the environment is an essential capability for every service robot. Especially for household robots acting in indoor environments, semantic information is important. In this paper, we present a semantic mapping framework with modular map representations. Our system is capable of online mapping and object updating given object detections from RGB-D data and provides various 2D and 3D~representations of the mapped objects. To undo wrong data associations, we perform a refinement step when updating object shapes. Furthermore, we maintain an existence likelihood for each object to deal with false positive and false negative detections and keep the map updated. Our mapping system is highly efficient and achieves a run time of more than 10 Hz. We evaluated our approach in various environments using two different robots, i.e., a Toyota HSR and a Fraunhofer Care-O-Bot-4. As the experimental results demonstrate, our system is able to generate maps that are close to the ground truth and outperforms an existing approach in terms of intersection over union, different distance metrics, and the number of correct object mappings. The code of our system can be found at https://github.com/NilsDengler/sem_mapping.


翻译:创建和保持环境的准确描述是每个服务机器人的基本能力。 特别是对于室内环境中的家庭机器人来说, 语义信息是重要的。 在本文中, 我们提出了一个带有模块化地图显示的语义制图框架。 我们的系统能够从 RGB- D 数据中在线测绘和天体更新给定的物体探测, 并提供被映射对象的2D 和 3D~ 代表。 为了消除错误的数据关联, 我们在更新天体形状时采取一个改进步骤。 此外, 我们保持每个物体存在的可能性, 以便处理虚假的正反向探测并不断更新地图。 我们的绘图系统效率很高, 运行时间超过 10 赫兹 。 我们使用两种不同的机器人, 即丰田HSR 和 Fraunhofer Care- O- Bot-4 来评估我们在不同环境中的方法。 实验结果显示, 我们的系统能够生成接近地面真相的地图, 并且超越现有的方法, 超越联盟的交叉点、 不同距离的测量标准以及正确天体绘图的数量。 我们的系统代码可以在 http:// immas/ imbs.

0
下载
关闭预览

相关内容

【NYU-WESLEY MADDOX】贝叶斯神经网络教程,83页ppt
专知会员服务
59+阅读 · 2021年4月15日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
已删除
将门创投
8+阅读 · 2019年3月18日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Semantic Grouping Network for Video Captioning
Arxiv
3+阅读 · 2021年2月3日
A Sketch-Based System for Semantic Parsing
Arxiv
4+阅读 · 2019年9月12日
VIP会员
相关VIP内容
【NYU-WESLEY MADDOX】贝叶斯神经网络教程,83页ppt
专知会员服务
59+阅读 · 2021年4月15日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
已删除
将门创投
8+阅读 · 2019年3月18日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员