Data augmentation is becoming essential for improving regression accuracy in critical applications including manufacturing and finance. Existing techniques for data augmentation largely focus on classification tasks and do not readily apply to regression tasks. In particular, the recent Mixup techniques for classification rely on the key assumption that linearity holds among training examples, which is reasonable if the label space is discrete, but has limitations when the label space is continuous as in regression. We show that mixing examples that either have a large data or label distance may have an increasingly-negative effect on model performance. Hence, we use the stricter assumption that linearity only holds within certain data or label distances for regression where the degree may vary by each example. We then propose MixRL, a data augmentation meta learning framework for regression that learns for each example how many nearest neighbors it should be mixed with for the best model performance using a small validation set. MixRL achieves these objectives using Monte Carlo policy gradient reinforcement learning. Our experiments conducted both on synthetic and real datasets show that MixRL significantly outperforms state-of-the-art data augmentation baselines. MixRL can also be integrated with other classification Mixup techniques for better results.


翻译:增加数据对于提高关键应用(包括制造和融资)的回归准确性至关重要。 现有的数据增强技术主要侧重于分类任务,并不轻易适用于回归任务。 特别是,最近的混合分类技术依赖于关键假设,即在培训实例中存在线性,如果标签空间是离散的,这是合理的,但如果标签空间是连续的,则有限制,与回归一样,标签空间是连续的。 我们显示,如果将具有较大数据或标签距离的示例混在一起,可能对模型性能产生越来越消极的影响。 因此,我们使用更严格的假设,即线性只存在于某些数据或标签距离内,而回归程度可能因每个例子而不同。 我们然后提议采用MixRL, 数据增强元性元性元性学习框架, 以学习如何将它与使用小的校准集的最佳模型性能混合起来。 MixRL 利用蒙特卡洛政策梯度强化学习实现这些目标。 我们在合成和真实数据集上进行的实验显示, MixRL 明显超越了数据增强状态的基线。 MixRL 还可以与其他分类方法相结合, 。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2020年10月2日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员