In this paper, we present a novel approach to identify linked fraudulent activities or actors sharing similar attributes, using Graph Convolution Network (GCN). These linked fraudulent activities can be visualized as graphs with abstract concepts like relationships and interactions, which makes GCNs an ideal solution to identify the graph edges which serve as links between fraudulent nodes. Traditional approaches like community detection require strong links between fraudulent attempts like shared attributes to find communities and the supervised solutions require large amount of training data which may not be available in fraud scenarios and work best to provide binary separation between fraudulent and non fraudulent activities. Our approach overcomes the drawbacks of traditional methods as GCNs simply learn similarities between fraudulent nodes to identify clusters of similar attempts and require much smaller dataset to learn. We demonstrate our results on linked accounts with both strong and weak links to identify fraud rings with high confidence. Our results outperform label propagation community detection and supervised GBTs algorithms in terms of solution quality and computation time.


翻译:在本文中,我们提出了一种新颖的方法,用图集网络(GCN)来识别相互关联的欺诈活动或具有类似属性的行为者。这些相关的欺诈活动可以被想象为带有诸如关系和互动等抽象概念的图表,从而使全球网络成为确定作为欺诈节点之间联系的图形边缘的理想解决办法。传统的社区探测方法要求将欺诈企图(如为寻找社区而共享属性)与监督下的解决办法紧密联系起来,这要求在欺诈假设中可能无法获得的大量培训数据,并努力最好地提供欺诈和非欺诈活动的二元分解。我们的方法克服了传统方法的缺点,因为全球网络只是学习欺诈性节点之间的相似之处,以识别类似尝试的集群,需要更少的数据集来学习。我们展示了我们联系密切和薄弱的关联账户的结果,以便以高度信任的方式识别欺诈集团。我们的结果超越了传播社区检测的标签,并监督了在解决方案质量和计算时间方面的GBT算法。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
4+阅读 · 2018年11月6日
Arxiv
9+阅读 · 2018年10月18日
Arxiv
4+阅读 · 2018年7月4日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员