Fredholm integral equations of the second kind that are defined on a finite or infinite interval arise in many applications. This paper discusses Nystr\"om methods based on Gauss quadrature rules for the solution of such integral equations. It is important to be able to estimate the error in the computed solution, because this allows the choice of an appropriate number of nodes in the Gauss quadrature rule used. This paper explores the application of averaged and weighted averaged Gauss quadrature rules for this purpose, and introduces new stability properties for them.
翻译:暂无翻译