We establish stable finite element (FE) approximations of convection-diffusion initial boundary value problems using the automatic variationally stable finite element (AVS-FE) method. The transient convection-diffusion problem leads to issues in classical FE methods as the differential operator can be considered singular perturbation in both space and time. The unconditional stability of the AVS-FE method, regardless of the underlying differential operator, allows us significant flexibility in the construction of FE approximations. We take two distinct approaches to the FE discretization of the convection-diffusion problem: i) considering a space-time approach in which the temporal discretization is established using finite elements, and ii) a method of lines approach in which we employ the AVS-FE method in space whereas the temporal domain is discretized using the generalized-alpha method. In the generalized-alpha method, we discretize the temporal domain into finite sized time-steps and adopt the generalized-alpha method as time integrator. Then, we derive a corresponding norm for the obtained operator to guarantee the temporal stability of the method. We present numerical verifications for both approaches, including numerical asymptotic convergence studies highlighting optimal convergence properties. Furthermore, in the spirit of the discontinuous Petrov-Galerkin method by Demkowicz and Gopalakrishnan, the AVS-FE method also leads to readily available a posteriori error estimates through a Riesz representer of the residual of the AVS-FE approximations. Hence, the norm of the resulting local restrictions of these estimates serve as error indicators in both space and time for which we present multiple numerical verifications adaptive strategies.
翻译:我们使用自动变分稳定有限元(AVS-FE)方法,建立对瞬态对流扩散问题的稳定有限元(FE)逼近。瞬态对流扩散问题在空间和时间上都被认为是奇异微扰,在经典FE方法中会出现问题。AVS-FE方法的无条件稳定性,无论基础微分算子如何,都允许我们在构建FE逼近时拥有高度的灵活性。我们采用两种不同的方法来离散对流扩散问题的有限元计算:i)采用时空方法,在时间离散化方面使用有限元方法,和ii)采用方法线(method of lines)的方法,在空间中采用AVS-FE方法,在时间上使用广义阿尔法方法对时间域进行离散化。在广义阿尔法方法中,我们将时间域离散为有限大小的时间步,并采用广义阿尔法方法作为时间积分器。然后,我们推导出相应的范数以保证方法的时间稳定性。我们为这两种方法提供了数值验证,包括数值渐近收敛研究,突出了最优收敛性质。此外,在Demkowicz和Gopalakrishnan的间断Petrov-Galerkin方法的思想下,AVS-FE方法还通过AVS-FE逼近的残差的Riesz代表形式提供了易于获得的后验误差估计。因此,这些估计的局部限制的范数可用作空间和时间的误差指标,我们提供了多种可调自适应策略的数值验证。