Learning stable dynamics from observed time-series data is an essential problem in robotics, physical modeling, and systems biology. Many of these dynamics are represented as an inputs-output system to communicate with the external environment. In this study, we focus on input-output stable systems, exhibiting robustness against unexpected stimuli and noise. We propose a method to learn nonlinear systems guaranteeing the input-output stability. Our proposed method utilizes the differentiable projection onto the space satisfying the Hamilton-Jacobi inequality to realize the input-output stability. The problem of finding this projection can be formulated as a quadratic constraint quadratic programming problem, and we derive the particular solution analytically. Also, we apply our method to a toy bistable model and the task of training a benchmark generated from a glucose-insulin simulator. The results show that the nonlinear system with neural networks by our method achieves the input-output stability, unlike naive neural networks. Our code is available at https://github.com/clinfo/DeepIOStability.
翻译:从观测到的时间序列数据中学习稳定动态是机器人、物理建模和系统生物学中的一个基本问题。许多这些动态是作为与外部环境交流的投入输出系统而呈现出来的。在本研究中,我们侧重于投入产出稳定系统,表现出对意外刺激和噪音的稳健性。我们提出了一种方法来学习非线性系统,以保证输入-产出稳定。我们建议的方法是利用在空间上满足汉密尔顿-Jacobi不平等的不同投影来实现输入-输出稳定。找到这一投影的问题可以被描述成一个象形制约二次编程问题,我们从分析中得出特定的解决办法。此外,我们运用了我们的方法,将一个可调和的模型和培训一项从葡萄糖-内壳模拟器产生的基准的任务。结果显示,与我们的方法相比,神经网络的非线性系统实现了输入-输出稳定。我们的代码可以在 https://github.com/clinfo/DeepIOStable上查阅。