One of the most difficult parts of motion planning in configuration space is ensuring a trajectory does not collide with task-space obstacles in the environment. Generating regions that are convex and collision free in configuration space can separate the computational burden of collision checking from motion planning. To that end, we propose an extension to IRIS (Iterative Regional Inflation by Semidefinite programming) [5] that allows it to operate in configuration space. Our algorithm, IRIS-NP (Iterative Regional Inflation by Semidefinite & Nonlinear Programming), uses nonlinear optimization to add the separating hyperplanes, enabling support for more general nonlinear constraints. Developed in parallel to Amice et al. [1], IRIS-NP trades rigorous certification that regions are collision free for probabilistic certification and the benefit of faster region generation in the configuration-space coordinates. IRIS-NP also provides a solid initialization to C-IRIS to reduce the number of iterations required for certification. We demonstrate that IRIS-NP can scale to a dual-arm manipulator and can handle additional nonlinear constraints using the same machinery. Finally, we show ablations of elements of our implementation to demonstrate their importance.
翻译:运动规划中最困难的部分之一是确保路径与环境中的任务空间障碍物不发生碰撞。在配置空间中生成凸集且不带碰撞的区域可以将碰撞检查的计算负担与运动规划分离。为此,我们提出了IRIS(迭代区域膨胀半定规划)[5]的扩展,使其能够在配置空间中运行。我们的算法,IRIS-NP(迭代区域膨胀半定和非线性规划),使用非线性优化来添加分离的超平面,以支持更一般的非线性约束。IRIS-NP与Amice等人[1]并行开发,将严格的认证凸集不带碰撞的方法交换为概率认证,带来了在配置空间坐标中更快速的凸集生成的好处。IRIS-NP还提供了C-IRIS的坚实初始化,以减少认证所需的迭代次数。我们展示了IRIS-NP可以扩展到双臂机械臂,并使用相同的机制处理额外的非线性约束。最后,我们展示了我们实现的元素的实验,证明其重要性。