Dominant sentence ordering models can be classified into pairwise ordering models and set-to-sequence models. However, there is little attempt to combine these two types of models, which inituitively possess complementary advantages. In this paper, we propose a novel sentence ordering framework which introduces two classifiers to make better use of pairwise orderings for graph-based sentence ordering. Specially, given an initial sentence-entity graph, we first introduce a graph-based classifier to predict pairwise orderings between linked sentences. Then, in an iterative manner, based on the graph updated by previously predicted high-confident pairwise orderings, another classifier is used to predict the remaining uncertain pairwise orderings. At last, we adapt a GRN-based sentence ordering model on the basis of final graph. Experiments on five commonly-used datasets demonstrate the effectiveness and generality of our model. Particularly, when equipped with BERT and FHDecoder, our model achieves state-of-the-art performance.
翻译:主导性命令模式可以分类为双向订购模式和按顺序排列的模式。 但是,几乎没有试图将这两种类型模式合并起来,而这两种类型模式自然具有互补优势。 在本文中,我们提议了一个新句子排序框架,引入两个分类器,以便更好地使用双向订单,用于基于图表的句子排序。特别是,考虑到一个初始句子-实体图,我们首先引入一个基于图表的分类器,以预测相关句子之间的对齐排序。然后,根据先前预测的高度松散双向订单更新的图表,以迭接方式,使用另一个分类器来预测剩余的不确定对对齐订单。最后,我们根据最后图表调整了一个基于GRN的句子排序模式。对五套常用数据集的实验显示了我们模型的有效性和普遍性。特别是,当我们模型配备了德国和德国德国的模型时,我们模型就实现了最先进的性能。