Neural Architecture Search (NAS) often trains and evaluates a large number of architectures. Recent predictor-based NAS approaches attempt to address such heavy computation costs with two key steps: sampling some architecture-performance pairs and fitting a proxy accuracy predictor. Given limited samples, these predictors, however, are far from accurate to locate top architectures due to the difficulty of fitting the huge search space. This paper reflects on a simple yet crucial question: if our final goal is to find the best architecture, do we really need to model the whole space well?. We propose a paradigm shift from fitting the whole architecture space using one strong predictor, to progressively fitting a search path towards the high-performance sub-space through a set of weaker predictors. As a key property of the proposed weak predictors, their probabilities of sampling better architectures keep increasing. Hence we only sample a few well-performed architectures guided by the previously learned predictor and estimate a new better weak predictor. This embarrassingly easy framework produces coarse-to-fine iteration to refine the ranking of sampling space gradually. Extensive experiments demonstrate that our method costs fewer samples to find top-performance architectures on NAS-Bench-101 and NAS-Bench-201, as well as achieves the state-of-the-art ImageNet performance on the NASNet search space. In particular, compared to state-of-the-art (SOTA) predictor-based NAS methods, WeakNAS outperforms all of them with notable margins, e.g., requiring at least 7.5x less samples to find global optimal on NAS-Bench-101; and WeakNAS can also absorb them for further performance boost. We further strike the new SOTA result of 81.3% in the ImageNet MobileNet Search Space. The code is available at https://github.com/VITA-Group/WeakNAS.


翻译:神经架构搜索(NAS) 通常会训练和评估大量建筑。 最近预测的NAS 方法试图通过两个关键步骤解决如此高昂的计算成本: 取样一些建筑性能配对, 安装一个代理性准确预测器。 但是,由于样本有限, 这些预测器远不能准确定位顶层建筑, 原因是难以安装巨大的搜索空间。 本文反映了一个简单而关键的问题 : 如果我们的最终目标是找到最佳的架构, 我们是否真的需要建好整个空间的模型? 我们建议改变模式, 从使用一个强大的预测器来装配整个建筑空间的模型, 以便通过一组较弱的预测器, 逐步将搜索路径安装到高性能子空间。 但是, 这些预测器在有限的样本中, 由于难以安装庞大的搜索空间搜索空间, 这些预测器的精确性能远远不够准确。 我们只能采集几个由先前所学的预测器指导的完善的架构, 并且估计一个新的更弱的预测器。 这个令人尴尬的NAISA-S- SO-S- SO-S- swear- silent rodestryal real comst mastrual- sal- sal- sal- sal set mastry- sal- sal- set madress mastryal- weal- sal- sal- sal- sal- sal- sal- sal- sal- setal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- setmental- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- setal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- set

0
下载
关闭预览

相关内容

ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
专知会员服务
59+阅读 · 2020年3月19日
【Amazon】使用预先训练的Transformer模型进行数据增强
专知会员服务
56+阅读 · 2020年3月6日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Github项目推荐 | AutoML与轻量模型列表
AI研习社
9+阅读 · 2019年5月4日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
6+阅读 · 2020年10月8日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Github项目推荐 | AutoML与轻量模型列表
AI研习社
9+阅读 · 2019年5月4日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员