Recent years have witnessed an upsurge of interest in employing flexible machine learning models for instrumental variable (IV) regression, but the development of uncertainty quantification methodology is still lacking. In this work we present a novel quasi-Bayesian procedure for IV regression, building upon the recently developed kernelized IV models and the dual/minimax formulation of IV regression. We analyze the frequentist behavior of the proposed method, by establishing minimax optimal contraction rates in $L_2$ and Sobolev norms, and discussing the frequentist validity of credible balls. We further derive a scalable inference algorithm which can be extended to work with wide neural network models. Empirical evaluation shows that our method produces informative uncertainty estimates on complex high-dimensional problems.
翻译:近年来,人们对采用灵活的机器学习模型进行工具变量(IV)回归的兴趣激增,但不确定量化方法的制定仍然缺乏。在这项工作中,我们提出了一个新的准巴伊西亚程序进行四级回归,其基础是最近开发的内核四型模型和四级回归的双重/最小配方。我们分析了拟议方法的频繁行为,将最低最大最佳收缩率定为2美元和索博列夫标准,并讨论了可靠球的经常有效性。我们进一步得出了可扩增的推论算法,该算法可以扩大到与广泛的神经网络模型合作。经验性评估表明,我们的方法产生了复杂的高维度问题的信息不确定性估计。