In metric search, worst-case analysis is of little value, as the search invariably degenerates to a linear scan for ill-behaved data. Consequently, much effort has been expended on more nuanced descriptions of what performance might in fact be attainable, including heuristic baselines like the AESA family, as well as statistical proxies such as intrinsic dimensionality. This paper gets to the heart of the matter with an exact characterization of the best performance actually achievable for any given data set and query. Specifically, linear-time objective-preserving reductions are established in both directions between optimal metric search and the minimum dominating set problem, whose greedy approximation becomes the equivalent of an oracle-based AESA, repeatedly selecting the pivot that eliminates the most of the remaining points. As an illustration, the AESA heuristic is adapted to downplay the role of previously eliminated points, yielding some modest performance improvements over the original, as well as its younger relative iAESA2.


翻译:在量度搜索中,最坏的个案分析没有多大价值,因为搜索总是逐渐变成对不守规数据进行线性扫描,因此,在更细微地描述实际可能实现的绩效方面已经付出了很大努力,包括像AESA家族那样的重力基线,以及诸如内在维度等统计代理物。本文触及问题的核心,确切地描述任何数据集和查询实际能够达到的最佳性能。具体地说,线性时间目标保留削减在最佳度量度搜索和最小支配性设定问题(其贪婪近似相当于甲骨文的AESA)之间的两个方向上,其贪婪近似相当于甲骨文的AESA,反复选择消除大部分剩余点的枢纽。举例来说,AESA超度被调整为低估了以前被删除点的作用,比原有点及其较年轻的相对的iAESA2。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
增强学习算法讲解:马尔可夫决策过程MDP
数据挖掘入门与实战
7+阅读 · 2018年4月22日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2020年10月14日
Arxiv
0+阅读 · 2020年10月14日
Arxiv
0+阅读 · 2020年10月13日
VIP会员
相关VIP内容
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
增强学习算法讲解:马尔可夫决策过程MDP
数据挖掘入门与实战
7+阅读 · 2018年4月22日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员