We consider the parameter estimation problem of a probabilistic generative model prescribed using a natural exponential family of distributions. For this problem, the typical maximum likelihood estimator usually overfits under limited training sample size, is sensitive to noise and may perform poorly on downstream predictive tasks. To mitigate these issues, we propose a distributionally robust maximum likelihood estimator that minimizes the worst-case expected log-loss uniformly over a parametric Kullback-Leibler ball around a parametric nominal distribution. Leveraging the analytical expression of the Kullback-Leibler divergence between two distributions in the same natural exponential family, we show that the min-max estimation problem is tractable in a broad setting, including the robust training of generalized linear models. Our novel robust estimator also enjoys statistical consistency and delivers promising empirical results in both regression and classification tasks.
翻译:我们考虑了使用自然指数分布式分布式分布式分布式分布式分布式组合规定的概率模型的参数估计问题。对于这个问题,典型的典型最大概率估计器通常在有限的培训样本规模下过大,对噪音很敏感,在下游预测性任务中可能表现不佳。为了缓解这些问题,我们提议了一个分布性强、最大概率估计器,将最差的预期日志损失统一在参数 Kullback- Leibel 球上与一个参数符号分布式分布式的参数一致最小化。我们利用了相同自然指数式大家庭中两种分布式的 Kullback- Leber 差异的分析表达方式,我们表明微轴估计问题在大环境中是可移动的,包括对通用线性模型进行有力的培训。我们这个新颖的强势估计器在统计上也具有一致性,在回归和分类任务中都提供了有希望的经验结果。