Over the last decade, several studies have investigated the weaknesses of Android malware detectors against adversarial examples by proposing novel evasion attacks; however, their practicality in manipulating real-world malware remains arguable. The majority of studies have assumed attackers know the details of the target classifiers used for malware detection, while in reality, malicious actors have limited access to the target classifiers. This paper presents a practical evasion attack, EvadeDroid, to circumvent black-box Android malware detectors. In addition to generating real-world adversarial malware, the proposed evasion attack can also preserve the functionality of the original malware samples. EvadeDroid prepares a collection of functionality-preserving transformations using an n-gram-based similarity method, which are then used to morph malware instances into benign ones via an iterative and incremental manipulation strategy. The proposed manipulation technique is a novel, query-efficient optimization algorithm with the aim of finding and injecting optimal sequences of transformations into malware samples. Our empirical evaluation demonstrates the efficacy of EvadeDroid under hard- and soft-label attacks. Moreover, EvadeDroid is capable to generate practical adversarial examples with only a small number of queries, with evasion rates of $81\%$, $73\%$, $75\%$, and $79\%$ for DREBIN, Sec-SVM, MaMaDroid, and ADE-MA, respectively. Finally, we show that EvadeDroid is able to preserve its stealthiness against five popular commercial antivirus, thus demonstrating its feasibility in the real world.


翻译:过去十年来,一些研究调查了Android 恶意软件探测器对对抗性证据的弱点,提出了新颖的规避攻击建议;然而,它们操纵真实世界的恶意软件的实用性仍然是可以论证的。大多数研究假设攻击者知道用于恶意软件检测的目标分类器的细节,而实际上恶意行为者接触目标分类器的渠道有限。本文介绍了一种实际的规避攻击,EvadeDroid,目的是绕过黑箱和机器人恶意软件探测器。除了产生真实世界的对抗性恶意软件外,拟议的规避攻击还可以维护原始恶意软件样品的功能。此外,EvadeDroid利用基于正克的类似方法准备了一套功能保护功能的变换。然后通过迭代和递增的操纵战略将恶意软件转换成良性软件。提议的操纵技术是一种新颖的、有查询效率的优化算法,目的是寻找和将最优的变换序列注入恶意软件样本。我们的经验评估了EvadeDroid在硬性和软标签攻击下的效力。此外,EvadeDroidrodroid用基于n-gy proid prival private pract pract pract practal$ practal press,我们能够产生一个实际的对抗真实的抗变现成本, $ $

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
专知会员服务
34+阅读 · 2020年12月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
45+阅读 · 2019年12月20日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员