We prove that there is a randomized polynomial-time algorithm that given an edge-weighted graph $G$ excluding a fixed-minor $Q$ on $n$ vertices and an accuracy parameter $\varepsilon>0$, constructs an edge-weighted graph~$H$ and an embedding $\eta\colon V(G)\to V(H)$ with the following properties: * For any constant size $Q$, the treewidth of $H$ is polynomial in $\varepsilon^{-1}$, $\log n$, and the logarithm of the stretch of the distance metric in $G$. * The expected multiplicative distortion is $(1+\varepsilon)$: for every pair of vertices $u,v$ of $G$, we have $\mathrm{dist}_H(\eta(u),\eta(v))\geq \mathrm{dist}_G(u,v)$ always and $\mathrm{Exp}[\mathrm{dist}_H(\eta(u),\eta(v))]\leq (1+\varepsilon)\mathrm{dist}_G(u,v)$. Our embedding is the first to achieve polylogarithmic treewidth of the host graph and comes close to the lower bound by Carroll and Goel, who showed that any embedding of a planar graph with $\mathcal{O}(1)$ expected distortion requires the host graph to have treewidth $\Omega(\log n)$. It also provides a unified framework for obtaining randomized quasi-polynomial-time approximation schemes for a variety of problems including network design, clustering or routing problems, in minor-free metrics where the optimization goal is the sum of selected distances. Applications include the capacitated vehicle routing problem, and capacitated clustering problems.


翻译:计划与无尘度度量嵌入多对数树宽内的度量,预期乘性失真任意接近于1 翻译后的摘要: 我们证明了存在一个随机化多项式时间算法,对于一个排除固定小图Q的边权图G和一个准确性参数ε>0,它可以构建一个边权图H和一个嵌入η∶V(G)→V(H),其具有以下特性: * 对于任意固定大小的Q,H的树宽都是多项式级别的,与ε-1,log n和G中距离度量的拉伸的对数有关。 * 期望乘性失真为(1+ε): 对于G中的任意一对顶点uv,我们始终有 $dist_H(\eta(u),\eta(v)) \geq dist_G(u,v)$且 $\mathrm{Exp}[dist_H(\eta(u),\eta(v))]\leq (1+\varepsilon)dist_G(u,v)$。 我们的嵌入是第一个实现多对数树宽宿主图并接近于Carroll和Goel的下界的嵌入。他们证明了要求任何平面图的预期失真为$O(1)$,宿主图的树宽为$\Omega(log n)$。它还提供了一个统一的框架来获取随机化拟多项式时间逼近方案,用于解决包括网络设计,聚类或路由问题在内的小图度量问题,其中优化目标是所选距离的总和。 应用包括容量车辆路径问题和容量聚类问题。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
42+阅读 · 2020年12月18日
【斯坦福CS520】向量空间中嵌入的知识图谱推理,48页ppt
专知会员服务
101+阅读 · 2020年6月11日
专知会员服务
161+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
YOLOv3:An Incremental Improvement 全文翻译
极市平台
12+阅读 · 2018年3月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
0+阅读 · 2023年5月25日
VIP会员
相关资讯
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
YOLOv3:An Incremental Improvement 全文翻译
极市平台
12+阅读 · 2018年3月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员