We present a numerical framework for deep neural network (DNN) modeling of unknown time-dependent partial differential equations (PDE) using their trajectory data. Unlike the recent work of [Wu and Xiu, J. Comput. Phys. 2020], where the learning takes place in modal/Fourier space, the current method conducts the learning and modeling in physical space and uses measurement data as nodal values. We present a DNN structure that has a direct correspondence to the evolution operator of the underlying PDE, thus establishing the existence of the DNN model. The DNN model also does not require any geometric information of the data nodes. Consequently, a trained DNN defines a predictive model for the underlying unknown PDE over structureless grids. A set of examples, including linear and nonlinear scalar PDE, system of PDEs, in both one dimension and two dimensions, over structured and unstructured grids, are presented to demonstrate the effectiveness of the proposed DNN modeling. Extension to other equations such as differential-integral equations is also discussed.
翻译:我们提出了一个深神经网络(DNN)的数字框架(DNN),用于利用轨迹数据模拟未知时间依赖部分差异方程式(PDE)的模型。与最近[Wu和Xiu,J.Compuut.Phys.2020]的工作不同,在模型/Fourier空间进行学习,目前的方法在物理空间进行学习和建模,并将测量数据作为节点值使用。我们提出了一个DNN的结构,与基础PDE的进化操作器直接对应,从而确定了DNN模型的存在。DNN模型也不需要数据节点的任何几何信息。因此,经过培训的DNN为基本未知的PDE无结构网格确定了一个预测模型。还讨论了一系列例子,包括线性和非线性电弧 PDE系统,一个层面和两个层面,即结构化和无结构的电网,以证明拟议的DNN模型的有效性。扩展到其他方程式,如差异内方程式等。