We describe the application of the phase averaging technique to the nonlinear rotating shallow water equations on the sphere, discretised using compatible finite element methods. Phase averaging consists of averaging the nonlinearity over phase shifts in the exponential of the linear wave operator. Phase averaging is a form of heterogeneous multiscale method that aims to capture the slow dynamics in a solutionthat is smoother in time (in transformed variables) so that larger timesteps may be taken. Following Peddle et al (2019), we consider finite width phase averaging windows, since the equations have a finite timescale separation. In a numerical implementation, the averaging integral is replaced by a Riemann sum, where each term can be evaluated in parallel. This creates an opportunity for parallelism in the timestepping method, which we use here to compute our solutions. Here, we focus on the stability and accuracy of thenumerical solution and an evaluation of the parallel aspects will follow in later work.
翻译:我们描述对球体上非线性旋转浅水方程应用平均技术的情况,使用相容的有限元素方法进行分解。平均阶段包括线性波操作员指数变化的相向性平均非线性。平均阶段是一种多层次的多尺度方法形式,旨在以更平稳的时间(变异变量)来捕捉缓慢的动态,从而可以采取更大的时间步骤。在Peddle等人(2019年)之后,我们考虑有限宽级平均窗口,因为方程有一定的时间尺度分隔。在数字执行中,平均整体部分由Riemann总和取代,每个术语都可以同时评价。这为时间步骤方法的平行性创造了机会,我们在这里用来计算我们的解决方案。在这里,我们侧重于数字解决方案的稳定性和准确性,对平行问题的评估将在以后的工作中进行。