Hip fracture risk assessment is an important but challenging task. Quantitative CT-based patient specific finite element analysis (FEA) computes the force (fracture load) to break the proximal femur in a particular loading condition. It provides different structural information about the proximal femur that can influence a subject overall fracture risk. To obtain a more robust measure of fracture risk, we used principal component analysis (PCA) to develop a global FEA computed fracture risk index that incorporates the FEA-computed yield and ultimate failure loads and energies to failure in four loading conditions (single-limb stance and impact from a fall onto the posterior, posterolateral, and lateral aspects of the greater trochanter) of 110 hip fracture subjects and 235 age and sex matched control subjects from the AGES-Reykjavik study. We found that the first PC (PC1) of the FE parameters was the only significant predictor of hip fracture. Using a logistic regression model, we determined if prediction performance for hip fracture using PC1 differed from that using FE parameters combined by stratified random resampling with respect to hip fracture status. The results showed that the average of the area under the receive operating characteristic curve (AUC) using PC1 was always higher than that using all FE parameters combined in the male subjects. The AUC of PC1 and AUC of the FE parameters combined were not significantly different than that in the female subjects or in all subjects
翻译:对骨折的风险评估是一项重要但具有挑战性的任务。 基于CT的病人特定有限元素分析(FEA)计算了在特定装货条件下打破近似胎骨的力度(骨架负荷),它提供了影响一个对象骨折风险总体风险的粗骨骼结构信息。为了更有力地测量骨折风险,我们利用主要成分分析(PCA)开发了一个全球FEA计算骨折风险指数,该指数包含FEA计算成的产值和最终失灵负载和能量,在四个装载条件下(从坠落到后部、后部、以及较大骨折体的横向方面),造成骨折质骨折质骨折;它为110个臀骨折主体和235个年龄和性别提供了不同的结构信息。我们发现,FE参数的第一 PC(PC 1) 是臀骨折的唯一重要预测体。我们用一个男性回归模型确定,使用PC1预测骨折的性能表现是否不同于使用FE参数,而使用A1 PC1 和 PC1 类骨折状况所有平均标的骨折状况都使用A(ASU1 ASB1 ASB1 ASB1 的所有平均测试中的所有结果,在AU1 都使用AU1 不同主题下的所有平均正正正标值中,在AU1 都得到比B1 。